ارائهی روشی پویا برای پیشبینی مکانی-زمانی آلودگی هوای شهر تهران بر مبنای ماشین بردار پشتیبان
Authors
Abstract:
با توجه به آثار سوء آلودگی هوا بر سلامت انسانها و محیط، پیشبینی و مدلسازی این پدیده از جمله مسائل مهم در چند دههی گذشته بوده است. دینامیک غیرخطی و حجم بالای دادههای آلودگی هوا، مشکلات پیشبینی این پدیدهی پیچیده را، بویژه در پردازشهای پویا، دوچندان کرده است. هدف این پژوهش، ارائهی الگوریتمی برخط است که بتواند با حل مشکلات روشهای پیشین در پیشبینی برخط آلودگی هوا، سری زمانی آلودگی هوای شهر تهران را به صورت پویا پیشبینی کند. الگوریتم برخط ارائه شده بر مبنای ماشین بردار پشتیبان طراحی شده است. در الگوریتم ارائه شده، پیشبینی مبتنی بر دادههای جریانی جمعآوری شده توسط سنجندههای آلودگی هوا، سنجندههای هواشناسی و همچنین دادههای مکانی همچون ترافیک، ارتفاع متوسط منطقه و ویژگیهای سطح زمین انجام میشود. نتایج حاصل شده بیانگر دقت مناسب الگوریتم برخط، جهت پیشبینی پویای آلودگی هوای شهر تهران میباشد. استفاده از دادههای یک سال جهت انجام تست، دقت 0.71 و خطای جذر میانگین مربعات 0.54 و ضریب تعیین 0.81 را حاصل کرده است. افزون بر دقت مناسب، سرعت بالای پردازشها در الگوریتم برخط، کارایی این الگوریتم را برای طراحی سیستمی آنلاین جهت پیشبینی آلودگی هوای شهر تهران برای چند ساعت آینده به اثبات میرساند.
similar resources
ارائه ی روشی پویا برای پیش بینی مکانی-زمانی آلودگی هوای شهر تهران بر مبنای ماشین بردار پشتیبان
با توجه به آثار سوء آلودگی هوا بر سلامت انسان ها و محیط، پیش بینی و مدلسازی این پدیده از جمله مسائل مهم در چند دهه ی گذشته بوده است. دینامیک غیر خطی و حجم بالای داده های آلودگی هوا، مشکلات پیش بینی این پدیده ی پیچیده را، بویژه در پردازش های پویا، دوچندان کرده است. هدف این پژوهش، ارائه ی الگوریتمی برخط است که بتواند با حل مشکلات روش های پیشین در پیش بینی برخط آلودگی هوا، سری زمانی آلودگی هوای شه...
full textارایه مدلی مناسب با استفاده از ماشین بردار پشتیبان برای پیشبینی غلظت روزانه مونوکسیدکربن در هوای شهر تهران
Backgrounds and Objectives: Precise air pollutants prediction, as the first step in facing air pollution problem, could provide helpful information for authorities in order to have appropriate actions toward this challenge. Regarding the importance of carbon monoxide (CO) in Tehran atmosphere, this study aims to introduce a suitable model for predicting this pollutant. Materials and Method: W...
full textارایه مدلی مناسب با استفاده از ماشین بردار پشتیبان برای پیشبینی غلظت روزانه مونوکسیدکربن در هوای شهر تهران
زمینه و هدف: پیشبینی دقیق آلاینده های هوا، به عنوان اولین گام جهت برخورد مناسب با مشکل آلودگی هوا، میتواند اطلاعات مفیدی را برای برنامه ریزی جهت مقابله با این موضوع در اختیار مدیران ذیر بط قرار دهد. در این مقاله با توجه به معضل آلاینده مونوکسیدکربن (co) در هوای شهر تهران، اقدام به ارایه مدلی مناسب برای پیشبینی این آلاینده شده است. روش بررسی: برای این منظور از اطلاعات آلایندههای هوا و پارامتره...
full textارزیابی مدل ترکیبی موجک – حداقل مربعات ماشین بردار پشتیبان در ریزمقیاس کردن مکانی - زمانی سری های زمانی بارش
با توجه به نیاز شبیه سازی سری های زمانی بارش در مقیاس های مختلف برای مقاصد مهندسی از یک طرف و عدم ثبت این پارامترها در مقیاس های ریز بدلیل مشکلات اجرایی و اقتصادی از طرف دیگر، ریزمقیاس کردن بارش به مقیاس مورد نظر، یک امر ضروری می باشد. در این مطالعه، برای ریزمقیاس کردن سری زمانی بارش ایستگاه های تبریز و سهند، با توجه به ویژگی های غیرخطی مقیاس های زمانی، مدل ترکیبی موجک – حداقل مربعات ماشین بردا...
full textروشی جدید برای بهبود کلاسبندی اهداف هوایی راداری توسط کرنلهای مختلف ماشین بردار پشتیبان
امروزه مبحث کلاسبندی اهداف هوایی اهمیت روزافزونی یافته است و روشهای مختلفی برای رسیدن به این هدف مورد استفاده قرار می-گیرد. ماشین بردار پشتیبان از جمله جدیدترین روشهای مورد استفاده در این حوزه میباشد. در این مقاله برای کلاسبندی سه هدف جنگنده، هواپیمای مسافربری و هلیکوپتر از سه روش کلاسبندی چند کلاسه ماشین بردار پشتیبان شامل روش یکی در برابر یکی، یکی در برابر همه و گراف غیرچرخشی جهتدار پ...
full textپیشبینی ماهانه جریان با استفاده از ماشین بردار پشتیبان بر مبنای آنالیز مؤلفه اصلی
هدف اصلی این تحقیق بررسی تأثیر انتخاب متغیرهای ورودی با استفاده از آنالیز مؤلفه اصلی (PCA) بر عملکرد مدل ماشین بردار پشتیبان (SVM) برای پیشبینی ماهانه دبی رودخانه بود. به این منظور ابتدا با استفاده از 18 متغیر ورودی به مدل SVM، دبی جریان ماهانه پیشبینی شد. سپس با استفاده از PCA تعداد متغیرهای ورودی به مدل SVM از 18 متغیر به 5 مؤلفه کاهش یافت. در نهایت با استفاده از آماره توسعه یافته توسط نویس...
full textMy Resources
Journal title
volume 3 issue 4
pages 43- 63
publication date 2016-03
By following a journal you will be notified via email when a new issue of this journal is published.
No Keywords
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023